equation

P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E =
c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)
c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)


  mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)
c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)

c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) P + 1/2ρv� √SPlanck-Relation:E=hνN(f)=∫e^(ΘΛ)df)V)ᵦ�   Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σᵢ₌ Identity: e^(iπ) + 1 = 0Entropy:S=klnΩΠ== -∑(p(x) ᵢ₌Planck-Relation:E=hνE=mc : P + 1/2ρv� + ρgh = constantH(x)=∫√(Λ+λ)dx e^(iπ) � Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=^Ω Identity: e^(iπ) + 1 = 0δ'sMass-EnergyEquivalence:E=mc�=P+1/2ρvContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΓE =/E=mcxΣ�Continuity:∂ρ/∂t+∇�(ρv)=0z:P+1/2ρv�+ρgh=constant₁=∑F=ma orem: a� + b� = c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0q₁q₂/r��+ρgh(ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constantλContinuity : ∂ρ/∂t + ∇�(ρv) = 0xLorentz  : F = q(E + v�B)((λΣ∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F S = kₔ�-∑(p(x)  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sSecond:F=ma√EShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0δ e^(iπ) +Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0ω=∫Σ₃ᵦdξ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∫zAvogadro's:V/n=k2Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=)UncertaintyPrinciple:ΔxΔp≥ħ/2₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t∫:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2E = mc�'sMass-EnergyEquivalence:E=mc�orem:a�+b�=c��:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ₂ Logistic : xₖ₊₁ = rxₖ(1 - xₖ) F = maΨ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0�'sMass-EnergyEquivalence:E=mc� Δx ΔpShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) ∂u/∂t =∇�E=-∂B/∂t orem: a� + b� = c�Lorentz  : F = q(E + v�B)/ᵣUncertaintyPrinciple:ΔxΔp≥ħ/2 H(X) = UncertaintyPrinciple:ΔxΔp≥ħ/2G=H-TSIdealGas:PV=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0orem:a�+b�=c�V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Λ Identity: e^(iπ) + 1 = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0S=klnΩ Entropy : S = k ln ΩΦ∂C/∂t+rS∂CSchr�dinger:ĤΨ=iħ∂Ψ/∂t/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω rS∂CContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)Entropy:S=klnΩ√ + rS∂C/∂S + (:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiMass-Energy Equivalence: E = mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)z₂Φ ln ΩΨ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩIdentity:e^(iπ)+1=0√√'sFields:Gₐᵦ=8πGTₐᵦ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) e^(iπ) +/orem:a�+b�=c� Identity: e^(iπ) + 1 = 0Heat:∂u/∂t=α∇�uE�=(pc)�+(m₀c�)�√Σ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Logistic:xₖ₊₁=rxₖ(1-xₖ):P+1/2ρv�+ρgh=constant2 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λxₖ₊₁=Mass-Energy Equivalence: E = mc�)T=Logistic:xₖ₊₁=rxₖ(1-xₖ) S = k ln Ω 1 = 0 ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)₂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))λ=h/pH(x)=∫√(Λ+λ)dx√    Identity: e^(iπ) + 1 = 0�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)
 : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�:e^(iθ)=cos(θ)+isin(θ)√₁Schr�dinger:ĤΨ=iħ∂Ψ/∂t : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t Uncertainty Principle: Δx Δp ≥ ħ/2:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constantR==Σ'sFields:Gₐᵦ=8πGTₐᵦ+Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0PV=nRTλΠE=mc�1SchwarzschildRadius:rₛ=2GM/c�δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x) rxₖ(1 - xₖ)S=klnΩ : P + 1/2ρv� + ρgh = constant (qⱼ, Sₗ, D)Continuity:∂ρ/∂t+∇�(ρv)=0(Maxwell'ss:cssCopycode Entropy : S = k ln Ω ≥ ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΦContinuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0   Schr�dinger:ĤΨ=iħ∂Ψ/∂tH(X)=-∑(p(x)log₂pEntropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀ΣContinuity:∂ρ/∂t+∇�(ρv)=0 F = qrxₖ(1-xₖ)TShannonEntropy:H(X)=-∑(p(x)log₂p(x))'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)∇�E=ρ/ε₀1E =
1/2)σ�S�∂�C/∂SLorentz  : F = q(E + v�B)C+₌Lorentz  : F = q(E + v�B)ᵦMass-Energy Equivalence: E = mc�Continuity:∂ρ/∂t+∇�(ρv)=0 S = k ln ΩSchwarzschildRadius:rₛ=2GM/c�MandelbrotSet:Zₖ₊₁=Zₖ�+C δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΦLogistic:xₖ₊₁=rxₖ(1-xₖ)ΩF=ρgV F = k ⁿ/)�Lorentz:F=q(E+v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Bayes'orem:P(A|B)=P(B|A)P(A)/P(B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�('sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)G=H-TS Uncertainty Principle: Δx Δp ≥ ħ/2'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Identity:e^(iπ)+1=0ΞΦᴜ₄Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)Entropy:S=klnΩ= Entropy : S = k ln Ω : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)PV=nRTorem:a�+b�=c�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿ
/Λ=∫(ΓΣ+δ)dξ)/UncertaintyPrinciple:ΔxΔp≥ħ/2)orem:a�+b�=c�  e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))p(x)log₂pΣ(E + v�B)Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0H(x)=∫√(Λ+λ)dx Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ Identity: e^(iπ) + 1 = 0ᴠ'sFields:Gₐᵦ=8πGTₐᵦ'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦ=(qⱼ,Sₗ,D)HⁿLMass-Energy Equivalence: E = mc�)-∑(p(x) (∑ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)z∂u/∂x a� + :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∂C/∂t+rS∂CShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� ∂u/∂t =Lorentz  : F = q(E + v�B)ᵢ₌t/IdealGas:PV=nRT Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
'sFields:Gₐᵦ=8πGTₐᵦ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B)ΔU=Q-WofUniversalGravitation:F=G(m₁m₂)/r�∂S + (1/2)Mass-Energy Equivalence: E = mc�p(x) log₂ p(x)):P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0δ(qᵢ,Sₖ)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Entropy:S=klnΩ=ΔU=Q-WContinuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxc)∇�E=ρ/ε₀Entropy:S=klnΩ  e^(iπ) + 1 = 0 Entropy : S = k ln ΩLorentz:F=q(E+v�B)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᴜ₢Continuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B)Cv/∂x'sMass-EnergyEquivalence:E=mc�rxₖ(1 - xₖ)-∑(p(x) 'sMass-EnergyEquivalence:E=mc�-(E + v�B)Navier-Stokes:cssCopycode
Coulomb's:F=kq₁q₂/r�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�Maxwell'ss:cssCopycode : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Φ : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2� orem: a� + b� = c�Identity:e^(iπ)+1=0 Entropy : S = k ln Ω�'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0Hooke's:F=-kx Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ₒ)-₁∇�B=0Lorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2 : P + 1/2ρv� + ρgh = constantE∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0v)�)(v-nbⁿ=Σ Entropy : S = k ln Ω
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))   AᵣGibbsFreeEnergy:ΔG=ΔH-TΔS�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)+Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∆ δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ⁿEntropy:S=klnΩ'sMass-EnergyEquivalence:E=mc�βLorentz:F=q(E+v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ) e^(iπ) +ⁿContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Identity:e^(iπ)+1=0orem:a�+b�=c�Coulomb's:F=kq₁q₂/r�d(ₒΦ�Ψ:P+1/2ρv�+ρgh=constant a� + d
     mc�'sMass-EnergyEquivalence:E=mc�   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩħc∇)Ψ=mcΨUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢP₀=∂Φ/∂tSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨᵢΦE=mc�MandelbrotSet:Zₖ₊₁=Zₖ�+CNewton'sSecond:F=maTₐᵦ- rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Planck-Relation:E=hν Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0(P+a(n/:P+1/2ρv�+ρgh=constant ∂u/∂t =ΦLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)=(qⱼ,Sₗ,D)₃ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)+ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) a� +
UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constantB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) : P + 1/2ρv� + ρgh = constant Identity: e^(iπ) + 1 = 0log₂ p(x))Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))    ∇E=mc� xₖ₊₁ = + 1 = 0= -∑(p(x) Φ Uncertainty Principle: Δx Δp ≥ ħ/2�orem:a�+b�=c�α∇�E=ρ/ε₀orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Mass-Energy Equivalence: E = mc� orem: a� + b� = c�'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sFields:Gₐᵦ=8πGTₐᵦ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v)�)(v-nb (qⱼ, Sₗ, D)1Σ e^(iπ) +Continuity:∂ρ/∂t+∇�(ρv)=0(ₒ
 E = mc�Ω�= orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(�∂v/∂yandIdealGas:PV=nRTξ=constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�Ω)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Identity:e^(iπ)+1=0∂u/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ)∫Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ω=∫Σ₃ᵦdξLogistic:xₖ₊₁=rxₖ(1-xₖ)- rC = 0�Identity:e^(iπ)+1=0∆Navier-Stokes:cssCopycode∑F=maᴠ
Lorentz:F=q(E+v�B) Uncertainty Principle: Δx Δp ≥ ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti∆t=∫(1-V/c)⁻�dtPV=nRTorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)∫Continuity:∂ρ/∂t+∇�(ρv)=0ζ(s)=0fors=1/2+ti   :P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ofUniversalGravitation:F=G(m₁m₂)/r�F=G(m₁m₂)/r�ₐ∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�∇�B=0₃:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz  : F = q(E + v�B) Entropy : S = k ln Ω:P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))    xₖ₊₁ = ⁿβ:P+1/2ρv�+ρgh=constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))+Cₖ=∇�Φ-λ∫Θdx
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Coulomb's:F=kq₁q₂/r�^Mass-Energy Equivalence: E = mc�Entropy:S=klnΩ� ∂u/∂t =Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0tΩ'sMass-EnergyEquivalence:E=mc�Continuity : ∂ρ/∂t + ∇�(ρv) = 0ΔU=Q-WTUncertaintyPrinciple:ΔxΔp≥ħ/2ᵢ₌ Identity: e^(iπ) + 1 = 0 orem: a� + b� = c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2⁻
N(f)=∫e^(ΘΛ)df∂L/∂q-d(∂L/∂(dq/dt))/dt=0ₓShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))H ∂ρ/∂t +Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�B=0:ε=-Lorentz:F=q(E+v�B)(Identity:e^(iπ)+1=0Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩLorentz:F=q(E+v�B)SCPV=nRTContinuity:∂ρ/∂t+∇�(ρv)=0E=mcE�=(pc)�+(m₀c�)� - rC = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=Logistic:xₖ₊₁=rxₖ(1-xₖ)Λ�Φ=-4πGρσ�S�∂�C/∂S�Logistic:xₖ₊₁=rxₖ(1-xₖ)
 orem: a� + b� = c�-δ(qᵢ,Sₖ)log₂ p(x))Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0+√∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) H(X) =  Entropy : S = k ln Ω-∑(p(x) Entropy:S=klnΩ₂'sMass-EnergyEquivalence:E=mc�α=DLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0₂)ᵣContinuity:∂ρ/∂t+∇�(ρv)=0cC e^(iπ) +   Mass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant (qⱼ, Sₗ, D)R orem: a� + b� = c�Identity:e^(iπ)+1=0∂)�Φ=-4πGρ : P + 1/2ρv� + ρgh = constant∇�B=0₄B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)∏
Continuity:∂ρ/∂t+∇�(ρv)=0P+1/2ρv-:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant Uncertainty Principle: Δx Δp ≥ ħ/2 F = qContinuity:∂ρ/∂t+∇�(ρv)=0Entropy:S=klnΩₓ1==P₀=∂Φ/∂tS=klnΩL orem: a� + b� = c�ₗ₌ᴜ∇�E=ρ/ε₀   8πGp(x)log₂p:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 F = G�Entropy:S=klnΩ v�B))Π
UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0₄1=rxₖ(1 - xₖ)ᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2)Entropy:S=klnΩ Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Σ1GibbsFreeEnergy:ΔG=ΔH-TΔS1∇�B=0/ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)=:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)CcUncertaintyPrinciple:ΔxΔp≥ħ/2∇�E=-∂B/∂tLorentz  : F = q(E + v�B)ⁿP+1/2ρvz)PV=nRTMass-Energy Equivalence: E = mc�
Entropy:S=klnΩ:e^(iθ)=cos(θ)+isin(θ)E�=(pc)�+(m₀c�)�Identity:e^(iπ)+1=0orem:a�+b�=c�'sFields:Gₐᵦ=8πGTₐᵦ∂ρ/∂t∫UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ) α∇�u+ 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2ₐ ln Ω=ΔU=Q-WLorentz  : F = q(E + v�B)∇�E=ρ/ε₀Maxwell'ss:cssCopycode∇�E=ρ/ε₀E=mc Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ΣSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨΣΛ
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Λ=∫(ΓΣ+δ)dξₒ+(E + v�B)Lorentz:F=q(E+v�B)+ rS∂C/ Entropy : S = k ln ΩS=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constant δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)P+1/2ρvLogistic:xₖ₊₁=rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0q₁q₂/r�Maxwell'ss:cssCopycode)∂ Entropy : S = k ln ΩELorentz:F=q(E+v�B)∆
(∂C/∂t+rS∂C(δ(qᵢ,Sₖ) Uncertainty Principle: Δx Δp ≥ ħ/2Hooke's:F=-kx'sMass-EnergyEquivalence:E=mc� : P + 1/2ρv� + ρgh = constant�:P+1/2ρv�+ρgh=constant : P + 1/2ρv� + ρgh = constantRShannon Entropy: H(X) = -∑(p(x) log₂ p(x))IdealGas:PV=nRTMaxwell'ss:cssCopycodeSchr�dinger:ĤΨ=iħ∂Ψ/∂t δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Λ=∫(ΓΣ+δ)dξ1 Entropy : S = k ln Ω e^(iπ) + + rS∂C/∂S + (∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0√ F = q(E +Identity:e^(iπ)+1=0Logistic:xₖ₊₁=rxₖ(1-xₖ)H(X)=-∑(Πᴠ Identity: e^(iπ) + 1 = 0αUncertaintyPrinciple:ΔxΔp≥ħ/2λ=h/pShannonEntropy:H(X)=-∑(p(x)log₂p(x))+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
p(x)log₂pΔU=Q-W^∂�C/∂S� Logistic:xₖ₊₁=rxₖ(1-xₖ)₌Coulomb's:F=kq₁q₂/r�G=H-TSIdentity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₗ)-Lorentz:F=q(E+v�B)E�=(pc)�+(m₀c�)� v�B)Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ᵣ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0R∂S + (1/2)a�+Entropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ANewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)ᵢₚ∇�E=-∂B/∂t∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ƴ ∂ρ/∂t +ofUniversalGravitation:F=G(m₁m₂)/r�
Continuity:∂ρ/∂t+∇�(ρv)=0F=ρgV Uncertainty Principle: Δx Δp ≥ ħ/2-∑(p(x) (b� = c�λorem:a�+b�=c� orem: a� + b� = c� v�B)F=ρgVΔxΔp≥ħ/2Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�B=μ₀J+μ₀ε₀∂E/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(P+a(n/orem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)v/∂x'sMass-EnergyEquivalence:E=mc�)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1):P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u
)B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)�Φ=-4πGρ+Borem:a�+b�=c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Entropy:S=klnΩ(:ε=-Continuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ξAIdentity:e^(iπ)+1=0�UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�λ=h/p ∂ρ/∂t +Continuity:∂ρ/∂t+∇�(ρv)=0C:e^(iπ)+1=0 Δx Δp ≥ ħ/2Ψ)R= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)DShannonEntropy:H(X)=-∑(p(x)log₂p(x))Navier-Stokes:cssCopycodeHeat:∂u/∂t=α∇�u Δx ΔpIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B)C xₖ₊₁ = rxₖ(1 - xₖ)(Identity:e^(iπ)+1=0
∇�E=-∂B/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0+∇�(ρv)=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ΣNewton'sSecond:F=ma):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�Logistic:xₖ₊₁=rxₖ(1-xₖ):e^(iθ)=cos(θ)+isin(θ)/t∂u/∂xPlanck-Relation:E=hν∑F=maIdentity:e^(iπ)+1=0 orem: a� + b� = c� Entropy : S = k ln Ω δ(qᵢ, Sₖ) = ln Ω/(+ 1 = 0 Identity: e^(iπ) + 1 = 0)
ᵢ₌ⁿ∏)ₒₔ=ψz∆t=∫(1-V/c)⁻�dt δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S=klnΩ8πGContinuity : ∂ρ/∂t + ∇�(ρv) = 0ᵢₚ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Mass-Energy Equivalence: E = mc� Entropy : S = k ln Ω∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)√(Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Lorentz  : F = q(E + v�B) δ(qᵢ, Sₖ) =ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃UncertaintyPrinciple:ΔxΔp≥ħ/2
ⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 S = k ln ΩNavier-Stokes:cssCopycodeH(X) = -∑(p(x) log₂ p(x))=Lorentz:F=q(E+v�B)SchwarzschildRadius:rₛ=2GM/c�(ₓLogistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΞIdentity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₒ+=:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Ω ∇�(ρv) Entropy : S = k ln ΩPV=nRTRiemannHyposis:ζ(s)=0fors=1/2+tiᵢMass-Energy Equivalence: E = mc�
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₃ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Maxwell'ss:cssCopycodeShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�Φ=0 Uncertainty Principle: Δx Δp ≥ ħ/2+ⁿ�Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2Mass-Energy Equivalence: E = mc�βH : P + 1/2ρv� + ρgh = constant S = k ln ΩΣ₢):P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀ mc�dΦ/dtIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0(Lorentz  : F = q(E + v�B)
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨLogistic:xₖ₊₁=rxₖ(1-xₖ)v/∂x₂�Mass-Energy Equivalence: E = mc�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))() δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)    F = maShannon Entropy: H(X) = -∑(p(x) log₂ p(x))x₃Navier-Stokes:cssCopycode�ᵢIdentity:e^(iπ)+1=0BoltzmannEntropy:S=klnΩ
) Identity: e^(iπ) + 1 = 0V δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�) ∇�(ρv) = 0ₓ+ : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)'sMass-EnergyEquivalence:E=mc�₂=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dxAShannon Entropy: H(X) = -∑(p(x) log₂ p(x))(Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0DΣIdentity:e^(iπ)+1=0Lorentz:F=q(E+v�B) orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2b�=c�Xᵢ=Ψᵢ�ΘⁿT
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�Ξcorem:a�+b�=c�+∂v/∂yandλ=h/pS=klnΩ+ 1 = 0₢ᵢMass-Energy Equivalence: E = mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∇�B=0Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�Ω8πG-:e^(iπ)+1=0ψ orem: a� + b� = c� e^(iπ)  Identity: e^(iπ) + 1 = 0∂L/∂q-d(∂L/∂(dq/dt))/dt=0 orem: a� + b� = c�Lorentz  : F = q(E + v�B)/+
∆ Entropy : S = k ln Ω orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2 Entropy : S = k ln Ω'sMass-EnergyEquivalence:E=mc�'sFields:Gₐᵦ=8πGTₐᵦMass-Energy Equivalence: E = mc�:ε=-∮Ψdl=∇�F�Planck-Relation:E=hν∆t=∫(1-V/c)⁻�dtE�=(pc)�+(m₀c�)�Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0kLorentz:F=q(E+v�B)Maxwell'ss:cssCopycode-ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0+ ρgh = constantorem:a�+b�=c�Entropy:S=klnΩ F = q(E +(Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))a�+∇�B=0orem:a�+b�=c�₁λ Δx ΔpContinuity:∂ρ/∂t+∇�(ρv)=0₂Lorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=ρ/ε₀Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) =:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)) Identity: e^(iπ) + 1 = 0 Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�):P+1/2ρv�+ρgh=constant2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
�Newton'sofUniversalGravitation:F=G(m₁m₂)/r�ₓ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Σx∑ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0orem:a�+b�=c�ZΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ ∂ρ/∂t +B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)Identity:e^(iπ)+1=0 v�B)+ rS∂C/RShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2z Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΩH(X) = -∑(₢+ ρgh = constant orem: a� + b� = c�ofUniversalGravitation:F=G(m₁m₂)/r�-∑(p(x)
=+√(Coulomb's:F=kq₁q₂/r�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x)):e^(iθ)=cos(θ)+isin(θ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=Logistic:xₖ₊₁=rxₖ(1-xₖ)ELorentz:F=q(E+v�B)Σ:P+1/2ρv�+ρgh=constantⁿorem:a�+b�=c�HShannonEntropy:H(X)=-∑(p(x)log₂p(x))5:P+1/2ρv�+ρgh=constant(   ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₃)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0Navier-Stokes:cssCopycode
Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Schr�dinger:ĤΨ=iħ∂Ψ/∂t ∂ρ/∂t +Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Newton'sofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΔxΔp≥ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)δ(qᵢ,Sₖ) xₖ₊₁ = +ᴠ∂�C/∂S�  (m₁m₂) / r� Uncertainty Principle: Δx Δp ≥ ħ/2(iħ∂/∂t+ik
 v�B):P+1/2ρv�+ρgh=constant=log₂ p(x))Lorentz:F=q(E+v�B)�= e^(iπ) + F = k Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∏ Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0-:P+1/2ρv�+ρgh=constantIdentity:e^(iπ)+1=0 Uncertainty Principle: Δx Δp ≥ ħ/2-Lorentz  : F = q(E + v�B)B^E=mcLorentz:F=q(E+v�B) F = G Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constantLaplace's:∇�Φ=0 Identity: e^(iπ) + 1 = 0∆t=∫(1-V/c)⁻�dtE =Mass-Energy Equivalence: E = mc�∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0xₖ₊₁=∇�B=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0=constant : P + 1/2ρv� + ρgh = constantMass-Energy Equivalence: E = mc�∇:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) v�B)ΛLorentz  : F = q(E + v�B)/βⁿ₄=α)ψ orem: a� + b� = c�
Schr�dinger:ĤΨ=iħ∂Ψ/∂tTₐᵦA:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Heat:∂u/∂t=α∇�u'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Σ F = maMass-Energy Equivalence: E = mc�Lorentz  : F = q(E + v�B))Lorentz:F=q(E+v�B)ΣE =UncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D))+Lorentz  : F = q(E + v�B)
Lorentz:F=q(E+v�B)ₒLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Coulomb's:F=kq₁q₂/r�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Mass-Energy Equivalence: E = mc�Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ- Uncertainty Principle: Δx Δp ≥ ħ/2 orem: a� + b� = c�Ƴorem:a�+b�=c� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Entropy:S=klnΩcΦ ∂ρ/∂t +Cₖ=∇�Φ-λ∫ΘdxMaxwell'ss:cssCopycode∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0P₀=∂Φ/∂t:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2Mass-Energy Equivalence: E = mc� Identity: e^(iπ) + 1 = 0Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)BoltzmannEntropy:S=klnΩ
₂Continuity:∂ρ/∂t+∇�(ρv)=0ₒδ(qᵢ,Sₖ)∇�Φ=0orem:a�+b�=c� : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)+∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0₁:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constant):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0⁻'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant'sMass-EnergyEquivalence:E=mc� orem: a� + b� = c�=constant xₖ₊₁ =  ∂ρ/∂t + δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)�G=H-TS+ 1 = 0β
Continuity:∂ρ/∂t+∇�(ρv)=0(Xᵢ=Ψᵢ�Θⁿorem:a�+b�=c�v)�)(v-nb∇�E=ρ/ε₀=Rxₖ₊₁=ₒΛcΛ=∫(ΓΣ+δ)dξₐShannonEntropy:H(X)=-∑(p(x)log₂p(x))√(σ�S�∂�C/∂S�Mass-Energy Equivalence: E = mc�(Identity:e^(iπ)+1=0Ψ : P + 1/2ρv� + ρgh = constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∇�E=ρ/ε₀S : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+F(E + v�B)Identity:e^(iπ)+1=0 ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0   orem:a�+b�=c�∇�E=ρ/ε₀ orem: a� + b� = c�Logistic:xₖ₊₁=rxₖ(1-xₖ):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω orem: a� + b� = c�� - rC = 0ΞShannonEntropy:H(X)=-∑(p(x)log₂p(x))Gibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0ⁿ∫:P+1/2ρv�+ρgh=constant
∂u/∂y=-∂ShannonEntropy:H(X)=-∑(p(x)log₂p(x))√√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=Continuity : ∂ρ/∂t + ∇�(ρv) = 0₂'sMass-EnergyEquivalence:E=mc�E�=(pc)�+(m₀c�)�ρMass-Energy Equivalence: E = mc�orem:a�+b�=c�Mass-Energy Equivalence: E = mc�UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0=(qⱼ,Sₗ,D) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0 Entropy : S = k ln ΩEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))ħc∇)Ψ=mcΨ
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ₔSchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)1/2)σ�S�∂�C/∂S   orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc�=constantρLogistic:xₖ₊₁=rxₖ(1-xₖ)Identity:e^(iπ)+1=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫Identity:e^(iπ)+1=0x orem: a� + b� = c�:P+1/2ρv�+ρgh=constantBHooke's:F=-kxħc∇)Ψ=mcΨ∆t=∫(1-V/c)⁻�dt
b� = c�∑F=maδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(ΞRE�=(pc)�+(m₀c�)��Identity:e^(iπ)+1=0 orem: a� + b� = c�σ�S�∂�C/∂S� ln ΩSchr�dinger:ĤΨ=iħ∂Ψ/∂tIdentity:e^(iπ)+1=0Σ'sMass-EnergyEquivalence:E=mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t+rS∂C∂u/∂x δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
SchwarzschildRadius:rₛ=2GM/c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 orem: a� + b� = c� orem: a� + b� = c� + rS∂C/∂S + ( orem: a� + b� = c�∂C/∂t+rS∂CNewton'sSecond:F=ma∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ΦUncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0Hooke's:F=-kxUncertaintyPrinciple:ΔxΔp≥ħ/2� P + 1/2ρv� :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)1/2)σ�S�∂�C/∂Sᵢₚ1/2)σ�S�∂�C/∂S
)ₒ∇�B=0Mass-Energy Equivalence: E = mc�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/2ξEntropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂t : P + 1/2ρv� + ρgh = constant) rS∂C:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Φ(Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 Uncertainty Principle: Δx Δp ≥ ħ/2cⁿc
 xₖ₊₁ = rxₖ(1 - xₖ)ₖUncertaintyPrinciple:ΔxΔp≥ħ/2∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0p(x) log₂ p(x))√UncertaintyPrinciple:ΔxΔp≥ħ/2a�+ ln Ωⁿ√'sMass-EnergyEquivalence:E=mc�) Uncertainty Principle: Δx Δp ≥ ħ/2Ω Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))1∇�B=μ₀J+μ₀ε₀∂E/∂tp(x)log₂p�:ε=-Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0UncertaintyPrinciple:ΔxΔp≥ħ/2    Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�Lorentz  : F = q(E + v�B)Identity:e^(iπ)+1=0ⁿΞⁿ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) Uncertainty Principle: Δx Δp ≥ ħ/2B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)ħc∇)Ψ=mcΨSchr�dinger:ĤΨ=iħ∂Ψ/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0Σorem:a�+b�=c�-:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ₒ Identity: e^(iπ) + 1 = 0
Σᵢₚ S = k:P+1/2ρv�+ρgh=constantᵣ√Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Identity:e^(iπ)+1=02-Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0(iħ∂/∂t+i δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ΨContinuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∫)orem:a�+b�=c�
xₖ₊₁=₃ZShannonEntropy:H(X)=-∑(p(x)log₂p(x))+orem:a�+b�=c� orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2 Entropy : S = k ln Ω�ofUniversalGravitation:F=G(m₁m₂)/r� Identity: e^(iπ) + 1 = 0∇�B=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0 : P + 1/2ρv� + ρgh = constant∇�Φ=0� Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant Logistic : xₖ₊₁ = rxₖ(1 - xₖ) : P + 1/2ρv� + ρgh = constant�Logistic:xₖ₊₁=rxₖ(1-xₖ)1Newton'sSecond:F=maLorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant F = q(E + F = G Identity: e^(iπ) + 1 = 0� - rC = 0 Identity: e^(iπ) + 1 = 0∇�E=ρ/ε₀'sMass-EnergyEquivalence:E=mc�=ₒ e^(iπ) ((
ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln ΩIdentity:e^(iπ)+1=0() mc�∇�E=ρ/ε₀:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∂u/∂x₄� Logistic : xₖ₊₁ = rxₖ(1 - xₖ) ∇�(ρv)Logistic:xₖ₊₁=rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0-⁻8πG:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Xᵢ=Ψᵢ�Θⁿ
βIdentity:e^(iπ)+1=0 ∇�(ρv)Identity:e^(iπ)+1=0Ψv/∂xE+ ρgh = constant orem: a� + b� = c�)Rλorem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0Σ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 ∇�(ρv)  
:P+1/2ρv�+ρgh=constantⁿΨᵣorem:a�+b�=c�Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant�Entropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))Logistic:xₖ₊₁=rxₖ(1-xₖ)orem:a�+b�=c� Identity: e^(iπ) + 1 = 0ᵢPlanck-Relation:E=hν Identity: e^(iπ) + 1 = 0=Newton'sSecond:F=ma
∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0)� orem: a� + b� = c�ₖMass-Energy Equivalence: E = mc� ln ΩUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Φ( Uncertainty Principle: Δx Δp ≥ ħ/2�x'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0'sMass-EnergyEquivalence:E=mc�S=klnΩ F = q orem: a� + b� = c�=IdealGas:PV=nRT
H(X)=-∑( F = qlog₂ p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 (m₁m₂) / r�Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 : P + 1/2ρv� + ρgh = constant= Identity: e^(iπ) + 1 = 0Identity:e^(iπ)+1=0ρ:P+1/2ρv�+ρgh=constantGibbsFreeEnergy:ΔG=ΔH-TΔSp(x) log₂ p(x)) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)))Σᵢ₌₁ⁿ(Δₙ-Φᵢ)=Ωᵢ
/� ∂ρ/∂t +dΦ/dtLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0v/∂x1Lorentz  : F = q(E + v�B) orem: a� + b� = c�orem:a�+b�=c�Logistic:xₖ₊₁=rxₖ(1-xₖ)Γₓ F = maHooke's:F=-kx
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0ⁿSchr�dinger:ĤΨ=iħ∂Ψ/∂tE(Continuity : ∂ρ/∂t + ∇�(ρv) = 0ofUniversalGravitation:F=G(m₁m₂)/r�Logistic:xₖ₊₁=rxₖ(1-xₖ)(Entropy:S=klnΩ    Continuity:∂ρ/∂t+∇�(ρv)=0Mass-Energy Equivalence: E = mc�ₓ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
�Lorentz:F=q(E+v�B)ρΛ F = G₁₌ Identity: e^(iπ) + 1 = 0orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0₁Continuity:∂ρ/∂t+∇�(ρv)=0∂C/∂t+rS∂CCoulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t orem: a� + b� = c�
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩorem:a�+b�=c�₁Entropy:S=klnΩ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0    :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)-∇�B=μ₀J+μ₀ε₀∂E/∂t∇�E=-∂B/∂tShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycode/=Entropy:S=klnΩNewton'sofUniversalGravitation:F=G(m₁m₂)/r�orem:a�+b�=c�zUncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�
√E=mcΠE=mcBayes'orem:P(A|B)=P(B|A)P(A)/P(B)ΩΦdΦ/dt∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵢ₌UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0E=mc�orem:a�+b�=c� Δx ΔpSB(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1)xₖ₊₁=
+-Φ2:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)ξG=H-TS(v/∂xContinuity : ∂ρ/∂t + ∇�(ρv) = 0ζ(s)=0fors=1/2+ti/∂S ++∇�(ρv)=0Ω S = k√ Entropy : S = k ln ΩE=mc:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0UncertaintyPrinciple:ΔxΔp≥ħ/21 : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Newton'sofUniversalGravitation:F=G(m₁m₂)/r� Uncertainty Principle: Δx Δp ≥ ħ/2∂u/∂x
 ∂C/∂tContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΣBoltzmannEntropy:S=klnΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0V)ₐGibbsFreeEnergy:ΔG=ΔH-TΔSβ∂u/∂y=-∂+(Φ(Entropy:S=klnΩ  
L/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)Continuity:∂ρ/∂t+∇�(ρv)=0Cₖ=∇�Φ-λ∫Θdx∇�Φ=0ΔS≥0'sFields:Gₐᵦ=8πGTₐᵦ : P + 1/2ρv� + ρgh = constantorem:a�+b�=c�(ΣUncertaintyPrinciple:ΔxΔp≥ħ/2Planck-Relation:E=hνContinuity:∂ρ/∂t+∇�(ρv)=0/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) : P + 1/2ρv� + ρgh = constantContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω�
₂GibbsFreeEnergy:ΔG=ΔH-TΔS∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0IdealGas:PV=nRT(orem:a�+b�=c� F = GGibbs-Helmholtz:ΔG=ΔH-TΔSContinuity:∂ρ/∂t+∇�(ρv)=0��F=G(m₁m₂)/r�)βShannon Entropy: H(X) = -∑(p(x) log₂ p(x)) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constant+
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Λz Uncertainty Principle: Δx Δp ≥ ħ/2v)�)(v-nborem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):P+1/2ρv�+ρgh=constantb� = c�=Φ : P + 1/2ρv� + ρgh = constantShannonEntropy:H(X)=-∑(p(x)log₂p(x))�:e^(iθ)=cos(θ)+isin(θ)ᵢ₌ : P + 1/2ρv� + ρgh = constantLogistic:xₖ₊₁=rxₖ(1-xₖ)ΔU=Q-W xₖ₊₁ = 2
UncertaintyPrinciple:ΔxΔp≥ħ/2= Δx Δp Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constantⁿt orem: a� + b� = c� Entropy : S = k ln ΩMandelbrotSet:Zₖ₊₁=Zₖ�+C e^(iπ) +BoltzmannEntropy:S=klnΩShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ
= -∑(p(x)   e^(iπ) + 1 = 0orem:a�+b�=c� (m₁m₂) / r�(:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)UncertaintyPrinciple:ΔxΔp≥ħ/2ΔU=Q-Worem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Continuity:∂ρ/∂t+∇�(ρv)=0 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)):e^(iπ)+1=0Bayes'orem:P(A|B)=P(B|A)P(A)/P(B)
UncertaintyPrinciple:ΔxΔp≥ħ/2ΔxΔp≥ħ/2IdealGas:PV=nRT'sMass-EnergyEquivalence:E=mc�∑� - rC = 0'sMass-EnergyEquivalence:E=mc�√∂C/∂t UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity:∂ρ/∂t+∇�(ρv)=0 Uncertainty Principle: Δx Δp ≥ ħ/2∫Entropy:S=klnΩLaplace's:∇�Φ=0λ=h/p(IdealGas:PV=nRT)
∇�E=-∂B/∂tΣP₀=∂Φ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ₗ= mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�)Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψorem:a�+b�=c�:P+1/2ρv�+ρgh=constantΣ:P+1/2ρv�+ρgh=constant∇�B=μ₀J+μ₀ε₀∂E/∂t
:P+1/2ρv�+ρgh=constant ∂ρ/∂t + : P + 1/2ρv� + ρgh = constantS=klnΩ ∂ρ/∂t +�ΣΣζ(s)=0fors=1/2+ti Entropy : S = k ln Ωorem:a�+b�=c�Lorentz:F=q(E+v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∂L/∂q-d(∂L/∂(dq/dt))/dt=0�Lorentz:F=q(E+v�B)=
Planck-Relation:E=hν)∂S + (1/2)ᴜ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Continuity:∂ρ/∂t+∇�(ρv)=0Continuity:∂ρ/∂t+∇�(ρv)=0∇�E=ρ/ε₀S=klnΩorem:a�+b�=c�:e^(iθ)=cos(θ)+isin(θ)ΔU=Q-W:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)E=mc�RiemannHyposis:ζ(s)=0fors=1/2+ti
₌= : P + 1/2ρv� + ρgh = constant/= -∑(p(x) :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=01/2)σ�S�∂�C/∂S:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)- rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0'sMass-EnergyEquivalence:E=mc�SchwarzschildMetric:ds�=-(1-2GM/c�)dt�+(1-2GM/c�)⁻�dr�+r�(dθ�+sin�θdφ�)+E =b�=c�1orem:a�+b�=c�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(x))orem:a�+b�=c� Entropy : S = k ln Ω
 Identity: e^(iπ) + 1 = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) Entropy : S = k ln Ωlog₂ p(x))orem:a�+b�=c�δ(qᵢ,Sₖ)H(X)=-∑(Lorentz  : F = q(E + v�B)Entropy:S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩ:P+1/2ρv�+ρgh=constantContinuity:∂ρ/∂t+∇�(ρv)=0Lorentz:F=q(E+v�B) e^(iπ) +)
'sMass-EnergyEquivalence:E=mc� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Coulomb's:F=kq₁q₂/r�  e^(iπ) + 1 = 0orem:a�+b�=c�Lorentz:F=q(E+v�B)v)�)(v-nbIdentity:e^(iπ)+1=0Entropy:S=klnΩLogistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D):P+1/2ρv�+ρgh=constantΣContinuity:∂ρ/∂t+∇�(ρv)=0
�(Lorentz  : F = q(E + v�B)(E + v�B)Identity:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantc Uncertainty Principle: Δx Δp ≥ ħ/2∑Sorem:a�+b�=c�8πG rS∂C'sMass-EnergyEquivalence:E=mc�Logistic:xₖ₊₁=rxₖ(1-xₖ)ζ(s)=0fors=1/2+ti Entropy : S = k ln ΩΩ
₁/ orem: a� + b� = c�RiemannHyposis:ζ(s)=0fors=1/2+ticP+1/2ρv∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0ᵣ orem: a� + b� = c� Entropy : S = k ln Ω Uncertainty Principle: Δx Δp ≥ ħ/2∂C/∂t +Lorentz:F=q(E+v�B)�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�  e^(iπ) + 1 = 0'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0ΔS≥0ᴠΓ F = q(E +/ - rC = 0σ�S�∂�C/∂S�+
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t Identity:e^(iπ)+1=0Newton'sSecond:F=maCoulomb's:F=kq₁q₂/r�SchwarzschildRadius:rₛ=2GM/c�Entropy:S=klnΩ Entropy : S = k ln Ωħc∇)Ψ=mcΨIdentity:e^(iπ)+1=0E=mc(iħ∂/∂t+i mc�EShannonEntropy:H(X)=-∑(p(x)log₂p(x)) mc�1Mass-Energy Equivalence: E = mc� ∇�(ρv)z
E�=(pc)�+(m₀c�)� Identity: e^(iπ) + 1 = 0∇�B=0Ξ'sMass-EnergyEquivalence:E=mc� e^(iπ) +Continuity : ∂ρ/∂t + ∇�(ρv) = 0'sMass-EnergyEquivalence:E=mc�∂v/∂t+(v�∇)v=-∇p/ρ+ν∇�v+FMaxwell'ss:cssCopycodeBell'sorem:|E(θ)-E(φ)|≤2( Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))(Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz:F=q(E+v�B)R�
 α∇�u√∑F=maₒ)cShannonEntropy:H(X)=-∑(p(x)log₂p(x)):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)= Uncertainty Principle: Δx Δp ≥ ħ/2:e^(iθ)=cos(θ)+isin(θ) Identity: e^(iπ) + 1 = 0ΦΦ Entropy : S = k ln Ω
 : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantΦLorentz  : F = q(E + v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iπ)+1=0:P+1/2ρv�+ρgh=constantΣ'sFields:Gₐᵦ=8πGTₐᵦLorentz:F=q(E+v�B) 1 = 0R
Λ∂u/∂y=-∂Lorentz  : F = q(E + v�B)Lorentz:F=q(E+v�B) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)∂C/∂t+rS∂C( δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Xᵢ=Ψᵢ�Θⁿ=+E=mc�α F = ma Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(∂u/∂y=-∂Continuity : ∂ρ/∂t + ∇�(ρv) = 0
B(ν,T)=(8πν�/c�)hν/(e^(hν/kT)-1) Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2∇:P+1/2ρv�+ρgh=constant= δ(qᵢ, Sₖ) = Identity: e^(iπ) + 1 = 0�'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�ₖ δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
 F = k )Entropy:S=klnΩPlanck-Relation:E=hν∇�E=ρ/ε₀ Entropy : S = k ln ΩCoulomb's:F=kq₁q₂/r�₁)=:e^(iθ)=cos(θ)+isin(θ)=constant
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Schr�dinger:ĤΨ=iħ∂Ψ/∂t=constantⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Identity: e^(iπ) + 1 = 0₁E=mc�rxₖ(1-xₖ)Continuity:∂ρ/∂t+∇�(ρv)=0Identity:e^(iπ)+1=0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Identity:e^(iπ)+1=0(
orem:a�+b�=c�Lorentz:F=q(E+v�B)Mass-Energy Equivalence: E = mc�ᵢ₌ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ΨΦLogistic:xₖ₊₁=rxₖ(1-xₖ))=⁻ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
orem:a�+b�=c�� - rC = 0Schr�dinger:ĤΨ=iħ∂Ψ/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0∇�B=μ₀J+μ₀ε₀∂E/∂t�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0/Xᵢ=Ψᵢ�Θⁿα orem: a� + b� = c�UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2+=∂u/∂y=-∂Identity:e^(iπ)+1=0Entropy:S=klnΩ Δx Δp ≥ ħ/2z δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)==Entropy:S=klnΩ
Entropy:S=klnΩ1 e^(iπ) +∇�(ρv)=0Lorentz  : F = q(E + v�B)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Σ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)F=G(m₁m₂)/r� orem: a� + b� = c�∮Ψdl=∇�F�
UncertaintyPrinciple:ΔxΔp≥ħ/2EContinuity : ∂ρ/∂t + ∇�(ρv) = 0+Λ( Uncertainty Principle: Δx Δp ≥ ħ/2Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)= -∑(p(x) + rS∂C/�orem:a�+b�=c�Entropy:S=klnΩShannon Entropy: H(X) = -∑(p(x) log₂ p(x))Lorentz:F=q(E+v�B)
Continuity:∂ρ/∂t+∇�(ρv)=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩF=G(m₁m₂)/r�- rC = 0b� = c� Identity: e^(iπ) + 1 = 0∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0T : P + 1/2ρv� + ρgh = constant
orem:a�+b�=c�∑F=maIdealGas:PV=nRT:P+1/2ρv�+ρgh=constant₂Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constant orem: a� + b� = c�+ 1 = 0λΞ'sMass-EnergyEquivalence:E=mc�+∇�(ρv)=0
ofUniversalGravitation:F=G(m₁m₂)/r� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)UncertaintyPrinciple:ΔxΔp≥ħ/2 1 = 0Bell'sorem:|E(θ)-E(φ)|≤2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)BLorentz  : F = q(E + v�B)Logistic:xₖ₊₁=rxₖ(1-xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) (m₁m₂) / r� Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)
+ ρgh = constant)Cₖ=∇�Φ-λ∫Θdx⁻H(X) = -∑(∂C/∂t + orem: a� + b� = c�Continuity:∂ρ/∂t+∇�(ρv)=0�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant'sMass-EnergyEquivalence:E=mc�ₓ
(= -∑(p(x) Continuity : ∂ρ/∂t + ∇�(ρv) = 0ShannonEntropy:H(X)=-∑(p(x)log₂p(x)):P+1/2ρv�+ρgh=constantΦIdentity:e^(iπ)+1=0Identity:e^(iπ)+1=0₃Mass-Energy Equivalence: E = mc�β xₖ₊₁ = rxₖ(1 - xₖ)Bell'sorem:|E(θ)-E(φ)|≤2ZContinuity : ∂ρ/∂t + ∇�(ρv) = 0πCoulomb's:F=kq₁q₂/r�
UncertaintyPrinciple:ΔxΔp≥ħ/2Identity:e^(iπ)+1=0ᵢ∇:ε=-ΔU=Q-WUncertaintyPrinciple:ΔxΔp≥ħ/2Gibbs-Helmholtz:ΔG=ΔH-TΔS F = k Logistic:xₖ₊₁=rxₖ(1-xₖ) Identity: e^(iπ) + 1 = 0 : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
₃∂ρ/∂t(iħ∂/∂t+i Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2+UncertaintyPrinciple:ΔxΔp≥ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) F = ma+ rS∂C/
 v�B)'sMass-EnergyEquivalence:E=mc�Mass-Energy Equivalence: E = mc�∂C/∂t :δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Entropy:S=klnΩAorem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0∇�B=μ₀J+μ₀ε₀∂E/∂t₄
� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Identity:e^(iπ)+1=0Lorentz:F=q(E+v�B) F = G:e^(iθ)=cos(θ)+isin(θ)'sMass-EnergyEquivalence:E=mc�
Schr�dinger:ĤΨ=iħ∂Ψ/∂t:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ)₢ : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2IdealGas:PV=nRT:P+1/2ρv�+ρgh=constantEntropy:S=klnΩ8πG ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0
 : P + 1/2ρv� + ρgh = constant:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0 ln ΩₓLorentz  : F = q(E + v�B)₂:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀∇�Φ=0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)C
IdealGas:PV=nRT( = 0q₁q₂/r�δₔ Δx Δp Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Coulomb's:F=kq₁q₂/r�v)�)(v-nbShannonEntropy:H(X)=-∑(p(x)log₂p(x))
=H(x)=∫√(Λ+λ)dxP+1/2ρvΣEntropy:S=klnΩ : P + 1/2ρv� + ρgh = constant(E + v�B)orem:a�+b�=c�λ=h/porem:a�+b�=c� rS∂C:P+1/2ρv�+ρgh=constant(
Continuity : ∂ρ/∂t + ∇�(ρv) = 0Lorentz  : F = q(E + v�B):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0ⁿ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)'sMass-EnergyEquivalence:E=mc�ᴜLogistic:xₖ₊₁=rxₖ(1-xₖ)=x Uncertainty Principle: Δx Δp ≥ ħ/2
LΞ√∑'sMass-EnergyEquivalence:E=mc�Entropy:S=klnΩContinuity:∂ρ/∂t+∇�(ρv)=0orem:a�+b�=c�ⁿIdentity:e^(iπ)+1=0-Logistic:xₖ₊₁=rxₖ(1-xₖ)�Φ=-4πGρ
=�Avogadro's:V/n=k'sMass-EnergyEquivalence:E=mc�ofUniversalGravitation:F=G(m₁m₂)/r�Continuity:∂ρ/∂t+∇�(ρv)=0dContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Identity: e^(iπ) + 1 = 0
Hooke's:F=-kx₁∆Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Uncertainty Principle: Δx Δp ≥ ħ/2log₂ p(x))Identity:e^(iπ)+1=0Continuity:∂ρ/∂t+∇�(ρv)=0Coulomb's:F=kq₁q₂/r�rxₖ(1 - xₖ)F=ρgVᴜ
Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant=constant∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0F=G(m₁m₂)/r� ∂ρ/∂t +:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0E�=(pc)�+(m₀c�)�
E�=(pc)�+(m₀c�)�Mass-Energy Equivalence: E = mc��+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Γ orem: a� + b� = c�∆Entropy:S=klnΩ∇�B=μ₀J+μ₀ε₀∂E/∂tΦ=constant orem: a� + b� = c�
 orem: a� + b� = c�₁Entropy:S=klnΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2Φ'sMass-EnergyEquivalence:E=mc�Lorentz  : F = q(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Lorentz:F=q(E+v�B)Identity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Entropy:S=klnΩ
Lorentz:F=q(E+v�B) orem: a� + b� = c�F=ρgVLΨ/ Identity: e^(iπ) + 1 = 0∆PV=nRT H(X) = Ψ= - rC = 0cCoulomb's:F=kq₁q₂/r�
 Entropy : S = k ln Ω v�B) P + 1/2ρv� Newton'sSecond:F=maE=mcLorentz:F=q(E+v�B)Ξ Uncertainty Principle: Δx Δp ≥ ħ/2(= -∑(p(x) )ΛΨ
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(iħ∂/∂t+iSchr�dinger:ĤΨ=iħ∂Ψ/∂tMass-Energy Equivalence: E = mc�   Lorentz:F=q(E+v�B))∇-∑(p(x) (
= v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2₁ Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Continuity:∂ρ/∂t+∇�(ρv)=0 Identity: e^(iπ) + 1 = 0Lorentz  : F = q(E + v�B)=σ�S�∂�C/∂S� Identity: e^(iπ) + 1 = 0z  
ƳΦω=∫Σ₃ᵦdξ∫PV=nRTLorentz:F=q(E+v�B)+Ω₌∇�B=μ₀J+μ₀ε₀∂E/∂t
BoltzmannEntropy:S=klnΩₖ:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Lorentz:F=q(E+v�B)Schr�dinger:ĤΨ=iħ∂Ψ/∂tLorentz:F=q(E+v�B)) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(E + v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x)) orem: a� + b� = c� Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Lorentz:F=q(E+v�B)Lorentz:F=q(E+v�B):P+1/2ρv�+ρgh=constant - rC = 0Continuity : ∂ρ/∂t + ∇�(ρv) = 0∇�B=μ₀J+μ₀ε₀∂E/∂t∑:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 orem: a� + b� = c�
 Identity: e^(iπ) + 1 = 0)Logistic:xₖ₊₁=rxₖ(1-xₖ) Δx ΔpContinuity : ∂ρ/∂t + ∇�(ρv) = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ShannonEntropy:H(X)=-∑(p(x)log₂p(x))ₙSchr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|ΨₗLorentz:F=q(E+v�B)Π
 orem: a� + b� = c� F = GUncertaintyPrinciple:ΔxΔp≥ħ/2A Identity: e^(iπ) + 1 = 0ⁿ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 δ(qᵢ, Sₖ) =UncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x)))∂u/∂x∇�B=μ₀J+μ₀ε₀∂E/∂t(
D:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)Ψ:ε=-ΩofUniversalGravitation:F=G(m₁m₂)/r�/ ∂ρ/∂t +∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0 + rS∂C/∂S + ( Entropy : S = k ln ΩLorentz  : F = q(E + v�B) Uncertainty Principle: Δx Δp ≥ ħ/2
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Heat:∂u/∂t=α∇�u Identity: e^(iπ) + 1 = 0x   �) orem: a� + b� = c�IdealGas:PV=nRTF=ρgVLogistic:xₖ₊₁=rxₖ(1-xₖ)ψ
dΦ/dt:P+1/2ρv�+ρgh=constant:P+1/2ρv�+ρgh=constant Identity: e^(iπ) + 1 = 0SchwarzschildRadius:rₛ=2GM/c� Uncertainty Principle: Δx Δp ≥ ħ/2Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))F=ρgV∇�E=ρ/ε₀+ rS∂C/=β
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) Uncertainty Principle: Δx Δp ≥ ħ/2Σ/Lorentz:F=q(E+v�B)MandelbrotSet:Zₖ₊₁=Zₖ�+C:P+1/2ρv�+ρgh=constant Uncertainty Principle: Δx Δp ≥ ħ/2Lorentz  : F = q(E + v�B)∇�B=0ρₐ
Logistic:xₖ₊₁=rxₖ(1-xₖ)(x))+₃'sMass-EnergyEquivalence:E=mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₓLogistic:xₖ₊₁=rxₖ(1-xₖ)k₋₁
 1 = 0Mass-Energy Equivalence: E = mc�ξ₂ Identity: e^(iπ) + 1 = 0 Uncertainty Principle: Δx Δp ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) : P + 1/2ρv� + ρgh = constant�ofUniversalGravitation:F=G(m₁m₂)/r�∇�B=0
Ω Uncertainty Principle: Δx Δp ≥ ħ/2=(qⱼ,Sₗ,D) e^(iπ) Mass-Energy Equivalence: E = mc�)Ω
   UncertaintyPrinciple:ΔxΔp≥ħ/2ᴠR=(qⱼ,Sₗ,D)ofUniversalGravitation:F=G(m₁m₂)/r� orem: a� + b� = c�Laplace's:∇�Φ=0Ξ
Lorentz:F=q(E+v�B)₃UncertaintyPrinciple:ΔxΔp≥ħ/2p(x)log₂p Entropy : S = k ln Ωξ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)∑F=ma₌
Lorentz:F=q(E+v�B)ΔS≥0 : P + 1/2ρv� + ρgh = constant∂L/∂q-d(∂L/∂(dq/dt))/dt=0GibbsFreeEnergy:ΔG=ΔH-TΔS Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)E  e^(iπ) + 1 = 0 e^(iπ) xₖ₊₁=Identity:e^(iπ)+1=0
∆ₒ₂ Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0Navier-Stokes:cssCopycode-∑(p(x) Lorentz  : F = q(E + v�B)xₖ₊₁=∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0orem:a�+b�=c�
Logistic:xₖ₊₁=rxₖ(1-xₖ)Entropy:S=klnΩƳ∇�E=ρ/ε₀ΣUncertaintyPrinciple:ΔxΔp≥ħ/2
GibbsFreeEnergy:ΔG=ΔH-TΔSLaplace's:∇�Φ=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�  e^(iπ) + 1 = 0p(x) log₂ p(x))cShannon Entropy: H(X) = -∑(p(x) log₂ p(x))k:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
Continuity : ∂ρ/∂t + ∇�(ρv) = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�(Lorentz  : F = q(E + v�B)= Entropy : S = k ln Ω
Cₖ=∇�Φ-λ∫Θdxₓa�+:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)v/∂x2orem:a�+b�=c�Identity:e^(iπ)+1=0∇�E=ρ/ε₀
 F = Gₖ'sMass-EnergyEquivalence:E=mc�Lorentz:F=q(E+v�B)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))orem:a�+b�=c�orem:a�+b�=c� + rS∂C/∂S + (+Πd
Entropy:S=klnΩB(iħ∂/∂t+iUncertaintyPrinciple:ΔxΔp≥ħ/2:P+1/2ρv�+ρgh=constant1/2)σ�S�∂�C/∂S+∇�E=-∂B/∂t Uncertainty Principle: Δx Δp ≥ ħ/2
 : P + 1/2ρv� + ρgh = constant=Lorentz:F=q(E+v�B)cShannonEntropy:H(X)=-∑(p(x)log₂p(x))ᵣShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2^Coulomb's:F=kq₁q₂/r�
orem:a�+b�=c� 1 = 0v)�)(v-nbMass-Energy Equivalence: E = mc��ₓ
ħc∇)Ψ=mcΨΩ e^(iπ) L    + rS∂C/∂S + (RiemannHyposis:ζ(s)=0fors=1/2+ti
ₒ e^(iπ) ₃IdealGas:PV=nRTMass-Energy Equivalence: E = mc�:P+1/2ρv�+ρgh=constant)ₖ Identity: e^(iπ) + 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2
 Uncertainty Principle: Δx Δp ≥ ħ/2:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)(P+a(n/Lorentz:F=q(E+v�B)∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0(Lorentz  : F = q(E + v�B)Lorentz  : F = q(E + v�B)
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Entropy : S = k ln Ω)=nRTContinuity : ∂ρ/∂t + ∇�(ρv) = 0Mass-Energy Equivalence: E = mc�√∂u/∂y=-∂Sp(x)log₂p - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Gₐᵦ =
)UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�):∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Continuity : ∂ρ/∂t + ∇�(ρv) = 0Identity:e^(iπ)+1=0(Entropy:S=klnΩ∆t=∫(1-V/c)⁻�dt
Mass-Energy Equivalence: E = mc�=orem:a�+b�=c�₋₁∂u/∂xc α∇�uNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Entropy:S=klnΩ
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2+Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Φ ∂ρ/∂t +∆t=∫(1-V/c)⁻�dt∇�E=-∂B/∂t
)RiemannHyposis:ζ(s)=0fors=1/2+tiᴜH(X)=-∑(S=klnΩUncertaintyPrinciple:ΔxΔp≥ħ/2UncertaintyPrinciple:ΔxΔp≥ħ/2Σ - rC = 0Mass-Energy Equivalence: E = mc�:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
-Avogadro's:V/n=k:P\-Avogadro's:V/n=k:P\
+1/2ρv�+ρgh=constantλ=h/p=orem:a�+b�=c�ⁿ)rxₖ(1-xₖ)Schr�dinger:ĤΨ=iħ∂Ψ/∂t
 α∇�u= -∑(p(x)  (qⱼ, Sₗ, D) δ(qᵢ, Sₖ) =IdealGas:PV=nRTΣorem:a�+b�=c� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ₕ:P+1/2ρv�+ρgh=constant
ₓNewton'sofUniversalGravitation:F=G(m₁m₂)/r� Entropy : S = k ln ΩƳLorentz  : F = q(E + v�B) Entropy : S = k ln ΩLorentz:F=q(E+v�B)UncertaintyPrinciple:ΔxΔp≥ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0Eorem:a�+b�=c�Φ
∂v/∂yand δ(qᵢ, Sₖ) =)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₢ₙ Uncertainty Principle: Δx Δp ≥ ħ/2∇�B=0Mass-Energy Equivalence: E = mc�∂v/∂yand δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)⁻
SchwarzschildRadius:rₛ=2GM/c�(∑F=maAIdentity:e^(iπ)+1=0C)UncertaintyPrinciple:ΔxΔp≥ħ/2GibbsFreeEnergy:ΔG=ΔH-TΔSUncertaintyPrinciple:ΔxΔp≥ħ/2:e^(iθ)=cos(θ)+isin(θ)(=rxₖ(1-xₖ)
:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀Entropy:S=klnΩ₃UncertaintyPrinciple:ΔxΔp≥ħ/2Lorentz:F=q(E+v�B) : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�₌ orem: a� + b� = c�IdealGas:PV=nRTF=G(m₁m₂)/r�
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)(Newton'sSecond:F=ma ∇�(ρv)Lorentz  : F = q(E + v�B)'sFields:Gₐᵦ=8πGTₐᵦ∑F=ma Entropy : S = k ln ΩContinuity : ∂ρ/∂t + ∇�(ρv) = 0ΦSPV=nRT∆t=∫(1-V/c)⁻�dt
==ƳContinuity : ∂ρ/∂t + ∇�(ρv) = 0 Entropy : S = k ln Ω=constantp(x)log₂p Identity: e^(iπ) + 1 = 0(Entropy:S=klnΩ
Heat:∂u/∂t=α∇�u5:e^(iπ)+1=0∇�B=0ΣS=klnΩIdentity:e^(iπ)+1=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�
'sMass-EnergyEquivalence:E=mc�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))=constant orem: a� + b� = c�+∇�(ρv)=0'sMass-EnergyEquivalence:E=mc�(E + v�B)ΦEAvogadro's:V/n=k
�Σ (qⱼ, Sₗ, D)∇�E=-∂B/∂tv/∂xLogistic:xₖ₊₁=rxₖ(1-xₖ) F = ma(√Logistic:xₖ₊₁=rxₖ(1-xₖ)
=(qⱼ,Sₗ,D)GibbsFreeEnergy:ΔG=ΔH-TΔSᵢUncertaintyPrinciple:ΔxΔp≥ħ/2Hooke's:F=-kxlog₂ p(x))orem:a�+b�=c�'sMass-EnergyEquivalence:E=mc� Uncertainty Principle: Δx Δp ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)
MandelbrotSet:Zₖ₊₁=Zₖ�+Cħc∇)Ψ=mcΨ : P + 1/2ρv� + ρgh = constantE=mc : P + 1/2ρv� + ρgh = constantαΦContinuity:∂ρ/∂t+∇�(ρv)=0
Continuity:∂ρ/∂t+∇�(ρv)=0d-�ᴜMass-Energy Equivalence: E = mc�λₖ2:P+1/2ρv�+ρgh=constant Entropy : S = k ln ΩIdentity:e^(iπ)+1=0ΔxΔp≥ħ/2
ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�UncertaintyPrinciple:ΔxΔp≥ħ/2 orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∂ρ/∂t= ≥ ħ/2Continuity : ∂ρ/∂t + ∇�(ρv) = 0  
orem:a�+b�=c�β+ Entropy : S = k ln ΩContinuity:∂ρ/∂t+∇�(ρv)=0PV=nRTC^Entropy:S=klnΩΛ
Continuity : ∂ρ/∂t + ∇�(ρv) = 0= δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ᵢₚ Identity: e^(iπ) + 1 = 0 H(X) = ₌ orem: a� + b� = c�P+1/2ρv
∂L/∂q-d(∂L/∂(dq/dt))/dt=0orem:a�+b�=c�Continuity : ∂ρ/∂t + ∇�(ρv) = 0�+ρgh orem: a� + b� = c�:P+1/2ρv�+ρgh=constant∇�E=ρ/ε₀
ₗ orem: a� + b� = c�Tₐᵦ F = k λ=h/p xₖ₊₁ = rxₖ(1 - xₖ)/∂S +δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)  
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0SCoulomb's:F=kq₁q₂/r�Entropy:S=klnΩ��'sMass-EnergyEquivalence:E=mc�Identity:e^(iπ)+1=0E=mc�
+∇�(ρv)=0ₙ/=Continuity : ∂ρ/∂t + ∇�(ρv) = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2orem:a�+b�=c�Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ⁿ
Schr�dingerforHydrogenAtom:ĤΨ=-ħ�/2μ∇�Ψ-k�e�/|r|Ψ)Lorentz  : F = q(E + v�B)₄tLorentz  : F = q(E + v�B)Tₐᵦ)
�ΞEntropy:S=klnΩⁿ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 : P + 1/2ρv� + ρgh = constant∂C/∂t
S=klnΩᵢₚUncertaintyPrinciple:ΔxΔp≥ħ/2∂u/∂y=-∂∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0Newton'sofUniversalGravitation:F=G(m₁m₂)/r�8πG∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0UncertaintyPrinciple:ΔxΔp≥ħ/2
 : P + 1/2ρv� + ρgh = constantofUniversalGravitation:F=G(m₁m₂)/r�rxₖ(1 - xₖ)�orem:a�+b�=c�Continuity:∂ρ/∂t+∇�(ρv)=0
ᵢ₌∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0π Entropy : S = k ln ΩE=mc�UncertaintyPrinciple:ΔxΔp≥ħ/2 Uncertainty Principle: Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))∂ Entropy : S = k ln Ω
δ(qᵢ,Sₖ)Continuity : ∂ρ/∂t + ∇�(ρv) = 0zLorentz:F=q(E+v�B) Identity: e^(iπ) + 1 = 0Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0
 Entropy : S = k ln Ω H(X) = :P+1/2ρv�+ρgh=constantShannon Entropy: H(X) = -∑(p(x) log₂ p(x))1 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)/)₢
ρδ(qᵢ,Sₖ)Logistic:xₖ₊₁=rxₖ(1-xₖ)))
:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0orem:a�+b�=c�Shannon Entropy: H(X) = -∑(p(x) log₂ p(x)) : P + 1/2ρv� + ρgh = constant₌Planck-Relation:E=hν orem: a� + b� = c�⁻   Mass-Energy Equivalence: E = mc�LΛᵢ₌
Mass-Energy Equivalence: E = mc�-'sMass-EnergyEquivalence:E=mc�p(x)log₂p'sMass-EnergyEquivalence:E=mc�∂u/∂x�
 1 = 0UncertaintyPrinciple:ΔxΔp≥ħ/2� - rC = 0:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)RiemannHyposis:ζ(s)=0fors=1/2+tiContinuity:∂ρ/∂t+∇�(ρv)=0 e^(iπ) Ω1
Mass-Energy Equivalence: E = mc�⁻√Continuity : ∂ρ/∂t + ∇�(ρv) = 0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))₁�Continuity:∂ρ/∂t+∇�(ρv)=0
 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)    Identity:e^(iπ)+1=0((t:P+1/2ρv�+ρgh=constant)=nRT
ᵢₚΣᵢ₌₁ⁿ(Δₙ-Φᵢ)=ΩᵢMass-Energy Equivalence: E = mc�    Uncertainty Principle: Δx Δp ≥ ħ/2∑₄⁻ΣΞ
UncertaintyPrinciple:ΔxΔp≥ħ/2₁'sFields:Gₐᵦ=8πGTₐᵦ∑(F=G(m₁m₂)/r�
ᵣ ∂C/∂tMaxwell'ss:cssCopycodeN(f)=∫e^(ΘΛ)dfIdentity:e^(iπ)+1=0   α
 H(X) = Ω ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))δ(qᵢ,Sₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Maxwell'ss:cssCopycoderxₖ(1-xₖ) Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
S=klnΩP₀=∂Φ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2) Δx Δp'sMass-EnergyEquivalence:E=mc�:e^(iπ)+1=0:ε=-
 Entropy : S = k ln ΩShannonEntropy:H(X)=-∑(p(x)log₂p(x))∇�E=-∂B/∂tΩᵣΦ+ rS∂C/UncertaintyPrinciple:ΔxΔp≥ħ/2
Ξ : P + 1/2ρv� + ρgh = constant ∂C/∂tNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)UncertaintyPrinciple:ΔxΔp≥ħ/2
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constant   Maxwell'ss:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02)Maxwell'ss:cssCopycodeUncertaintyPrinciple:ΔxΔp≥ħ/2
∇�B=μ₀J+μ₀ε₀∂E/∂t∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0'sMass-EnergyEquivalence:E=mc� F = ma S = k'sMass-EnergyEquivalence:E=mc�:P+1/2ρv�+ρgh=constant∂C/∂t+rS∂Cₒ2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))UncertaintyPrinciple:ΔxΔp≥ħ/2
:P+1/2ρv�+ρgh=constantShannonEntropy:H(X)=-∑(p(x)log₂p(x)):e^(iπ)+1=0=(qⱼ,Sₗ,D)√Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))   :∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
 : P + 1/2ρv� + ρgh = constantρE=mc δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))(iħ∂/∂t+i∫'sFields:Gₐᵦ=8πGTₐᵦ
Entropy:S=klnΩ'sFields:Gₐᵦ=8πGTₐᵦ₢/:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=02ₒ
Maxwell'ss:cssCopycodeShannonEntropy:H(X)=-∑(p(x)log₂p(x))/Schr�dinger:ĤΨ=iħ∂Ψ/∂tUncertaintyPrinciple:ΔxΔp≥ħ/2 Identity: e^(iπ) + 1 = 0Lorentz:F=q(E+v�B)
Entropy:S=klnΩ : P + 1/2ρv� + ρgh = constantSchr�dinger:ĤΨ=iħ∂Ψ/∂t):e^(iθ)=cos(θ)+isin(θ))Navier-Stokes:cssCopycode/UncertaintyPrinciple:ΔxΔp≥ħ/2
xE=mc-∑(p(x) ⁻ a� + � - rC = 0
+∂v/∂yandδ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)S Identity: e^(iπ) + 1 = 0IdealGas:PV=nRTβMandelbrotSet:Zₖ₊₁=Zₖ�+CEv/∂x
ᵢ₃:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Logistic:xₖ₊₁=rxₖ(1-xₖ) δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)ψ ≥ ħ/2 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) ∂ρ/∂t +
 ∇�(ρv) : P + 1/2ρv� + ρgh = constantUncertaintyPrinciple:ΔxΔp≥ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Aβ₂∂�C/∂S�  Logistic : xₖ₊₁ = rxₖ(1 - xₖ)
 δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)= orem: a� + b� = c�Mass-Energy Equivalence: E = mc�ₖ∂C/∂t + rS∂C/∂S + (1/2)σ�S�∂�C/∂S� - rC = 0Continuity:∂ρ/∂t+∇�(ρv)=0 Entropy : S = k ln ΩΣNewton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt) ∇�(ρv) = 0orem:a�+b�=c�
Lorentz  : F = q(E + v�B)∇�B=0 : P + 1/2ρv� + ρgh = constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Uncertainty Principle: Δx Δp ≥ ħ/2Entropy:S=klnΩ�+ρgh Logistic : xₖ₊₁ = rxₖ(1 - xₖ) Identity: e^(iπ) + 1 = 0P+1/2ρv orem: a� + b� = c�
 rS∂C orem: a� + b� = c�-Navier-Stokes:cssCopycode:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ))Γ:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0
∫C:P+1/2ρv�+ρgh=constantF=G(m₁m₂)/r�Maxwell'ss:cssCopycodeα δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D)(P+a(n/
ψContinuity : ∂ρ/∂t + ∇�(ρv) = 0Entropy:S=klnΩ∂v/∂yand/∂S+(1/2)σ�S�∂�C/∂S�-rC=0 Logistic : xₖ₊₁ = rxₖ(1 - xₖ)Newton'sofCooling:T(t)=Tₐ+(T₀-Tₐ)e^(-kt)
:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) orem: a� + b� = c�TLorentz:F=q(E+v�B)(E + v�B)orem:a�+b�=c�:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0Lorentz  : F = q(E + v�B)
'sFields:Gₐᵦ=8πGTₐᵦ e^(iπ) UncertaintyPrinciple:ΔxΔp≥ħ/2zLorentz  : F = q(E + v�B)ₒ∇�E=ρ/ε₀Bell'sorem:|E(θ)-E(φ)|≤2
Mass-Energy Equivalence: E = mc� δ(qᵢ, Sₖ) = (qⱼ, Sₗ, D) : P + 1/2ρv� + ρgh = constantLorentz:F=q(E+v�B)∮Ψdl=∇�F
RiemannHyposis:ζ(s)=0fors=1/2+ti:P+1/2ρv�+ρgh=constant:∂C/∂t+rS∂C/∂S+(1/2)σ�S�∂�C/∂S�-rC=0( orem: a� + b� = c�Mass-Energy Equivalence: E = mc� orem: a� + b� = c�ₔ
Shannon Entropy: H(X) = -∑(p(x) log₂ p(x))Mass-Energy Equivalence: E = mc� Uncertainty Principle: Δx Δp ≥ ħ/2ₗ�S=klnΩ
 : P + 1/2ρv� + ρgh = constantΔxΔp≥ħ/2β(Entropy:S=klnΩ(+ rS∂C/δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)H(x)=∫√(Λ+λ)dx:δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D)
)=nRT ∂C/∂tShannon Entropy: H(X) = -∑(p(x) log₂ p(x)):δ(qᵢ,Sₖ)=(qⱼ,Sₗ,D) (qⱼ, Sₗ, D)√ΔU=Q-WShannon Entropy: H(X) = -∑(p(x) log₂ p(x))
LF=G(m₁m₂)/r�'sMass-EnergyEquivalence:E=mc�ShannonEntropy:H(X)=-∑(p(x)log₂p(x))Coulomb's:F=kq₁q₂/r�Lorentz  : F = q(E + v�B)orem:a�+b�=c�
λ:P+1/2ρv�+ρgh=constantE = 0+
rxₖ(1-xₖ)rxₖ(1 - xₖ)Newton'sofUniversalGravitation:F=G(m₁m₂)/r�Mass-Energy Equivalence: E = mc�₂Heat:∂u/∂t=α∇�u∂₂Planck'sConstant:h=6.62607004�10⁻�⁴m�kg/s
Identity:e^(iπ)+1=0-∑(p(x) ΠZ : P + 1/2ρv� + ρgh = constant : P + 1/2ρv� + ρgh = constantContinuity:∂ρ/∂t+∇�(ρv)=0
orem:a�+b�=c�Lorentz  : F = q(E + v�B)- Logistic : xₖ₊₁ = rxₖ(1 - xₖ)ShannonEntropy:H(X)=-∑(p(x)log₂p(x))^H(X) = -∑(H∂C/∂t +
:P+1/2ρv�+ρgh=constantLorentz:F=q(E+v�B)orem:a�+b�=c�Φ:e^(iθ)=cos(θ)+isin(θ)₁πLorentz  : F = q(E + v�B)
VUncertaintyPrinciple:ΔxΔp≥ħ/2∇�B=μ₀J+μ₀ε₀∂E/∂tE Uncertainty Principle: Δx Δp ≥ ħ/2xₖ₊₁=
λ=h/p Δx Δp ≥ ħ/2ShannonEntropy:H(X)=-∑(p(x)log₂p(x))=∂S + (1/2)


Popular posts from this blog

Hecta us project us future

congo space agency